Private Communication in ICN

ICN RG 95 – Buenos Aires – 4/3/16

Mark Stapp, Cisco
Christopher Wood, PARC
Internet Privacy Threats (RFC 6973)

• Identification
 – reveal the identity of a user

• Correlation
 – connect actions performed by a single or multiple users

• Secondary use
 – replay user information without consent

• Disclosure
 – reveal (sensitive) information about a consumer

• Exclusion
 – hide outside usage of personal information
Today’s Mitigation Strategy

• The IP model is converging
 – The environment has changed since 2006, 2009 (RFC7258)
 – RFC6973 as a guiding baseline

• Encryption by default (c.f. IAB statement 11/2014, DPRIVE,TCPINC)- It's a pretty bright line
 – minimizes data disclosed to the network
 – hides the details of all traffic (modulo packet headers)
 – ephemeral traffic and identifiers (intermediate caching doesn’t help beyond retransmissions)
 – no correlation of user activity (modulo side channels)
What Does Private Mean?

<table>
<thead>
<tr>
<th></th>
<th>Encrypt Content</th>
<th>Forward Secure</th>
<th>Shared Cache</th>
<th>No Correlation Among Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the clear</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Per-user public key</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Group key(^1)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Private context</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

1) Conveying the group key probably requires the 'private context'
2) Assuming the group key is used for a single object or a limited set of objects
What Does Private Mean?

<table>
<thead>
<tr>
<th></th>
<th>Encrypt Content</th>
<th>Forward Secure</th>
<th>Shared Cache</th>
<th>No Correlation Among Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the clear</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Per-user public key</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Group key(^1)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Private context</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

Our claim: ICN communication should use a private context for Internet applications unless it impairs some necessary network feature.

The Internet and IETF are here.
What Does Private Mean?

• If ICN is to **complement or replace IP** as a general networking architecture, it needs parity with the emerging IP consensus

• Support major application models for the Internet
 – CDN-supported content delivery requiring authentication and access control
 – a la facebook, google search, youtube, netflix, bluejeans, twitch.tv

• Forward secrecy or not?
 – Resist passive data collection
 – Requires use of ephemeral keys, and key-negotiation protocol

• Separable authentication if we can't use identifiable/bound/traceable public keys

• Resist/reject injected messages
 – Esp. if Interests can "actuate"
Implications

• DTLS-like exchange that establishes ephemeral, symmetric keys

• Private session packets don't name "objects"

• Need a top-layer protocol to setup a "private (outer) context" to carry messages (inner context)
 – CCNx-KE [1] is one way to do this

• Name prefixes become 'service context' names rather than 'object' names
 – Which actually aligns with our use of the Internet to reach services

Outer and Inner Context

• Private ICN messages have an outer and inner context
• Outer context identifies a service (by a locator) and an inner context carries ICN messages
• Inner context messages have all the existing properties of ICN messages
• Outer context messages still have plenty of ICN goodness:
 – Active, intelligent forwarding features
 – Receiver-driven flow control
 – In-network local repair, local retransmission (for individual clients)
 – Mobility still may benefit
 – Provenance/'publisher' concepts still available
 – Opportunity for in-network congestion control
 – Opportunity for native CDN support
 – New "layering" model
 – Opportunity for API clarity and richness
• Shift focus away from "content sharing" and towards other network functions: flow and congestion control, mobility, SP needs, CDNs, TE, QoS, VPN, P2P
Outer and Inner Context Implications

• Outer context does not eliminate provenance information
• No opportunistic caching for outer context
 – And some "natural multicast" properties may go away
 – But no more cache poisoning
• Opens questions about binding 'publisher' to 'content'
• No single reliance on well-known public keys for protecting all traffic
• Some of the MTU/fragmentation issues change
• New DoS vectors?
 – Maybe we can finally use client puzzles
Questions to Answer

• What are the privacy requirements for ICN applications that are not inherited from the TCP/IP world?
 – The TCP/IP model shouldn’t define or constrain the ICN model

• What use cases or features are impaired by forward-secret communication?
 – The Internet worked to build on top of forward-secrecy, not around it

• What about the application interface?
 – For IP, privacy happens 'above' the 'base' network (OpenSSL, other frameworks)
 – How do ICN applications express their preferences or requirements?
 – How do ICN applications learn what is happening?
Backup
Discussion

• Where does the community stand?
 – comfortable saying "Parity with IP doesn't matter", or "It's fine to propose stepping backward"?
 – comfortable saying "Name exposure is acceptable, but encrypt content"?
 – uncomfortable with an ICN architecture that offers less than IP?