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ABSTRACT
Content-Centric Networking (CCN) is an emerging network-
ing paradigm in which named content, rather than named
network interfaces or hosts, are treated as first-class entities
representing the end-points of communication in a network.
This abstraction decouples data from its source to enable
multiple, simultaneous providers of data within the network,
which fosters optimized bandwidth consumption, improved
availability, reduced latency, and efficient utilization of mul-
tiple network interfaces concurrently. In CCN, this abstrac-
tion layer is provided by a lightweight API called the CCN
Portal. The CCN Portal API enables communication and
interaction via atomic request and content response mes-
sages, though applications may often require more robust
abstractions. To this end, we introduce the CCN Assembly
Framework (AF). The AF provides a Create Read, Update,
and Delete (CRUD) interface for reading and manipulating
data “in the network.” We then show how to use the AF API
with the UNIX file I/O API, thereby placing file I/O and
network communication under a single, standard API. The
ultimate goal is to merge remote and local data to make ap-
plications network agnostic, which is extremely compelling
in society’s increasingly network-oriented ecosystem.

1. INTRODUCTION
The Internet is a de facto public utility used by a sig-

nificant fraction of humankind who rely on it for numer-
ous daily activities. Despite unparalleled success and un-
expected longevity, applications and the traffic they gener-
ate are changing. Low-bandwidth interactive (e.g., remote
log-in) and store-and-forward (e.g., email) traffic that dom-
inated the early Internet is increasingly superseded by the
web-dominated Internet of today. This change has been pro-
duced applications with a significantly larger emphasis on
content, such as social media applications and video stream-
ing services. Together, they changed the very nature by
which the Internet is used; point-to-point telephony-like con-
versations are no longer the norm. Rather, the Internet is
used by consumers who want content delivered rapidly and
securely, regardless of where it comes from.

The suite of protocols that exist in the current TCP/IP
model have not properly satisfied these new use cases well.
All of the abstractions provided by interfaces to these pro-
tocols are inherently location-dependent and provide little
more than packet transmission and receipt functionality. In
an increasingly content-centric world, abstractions for con-
tent are needed to build modern applications and services.
Therefore, in addition to reconsidering the Internet archi-

tecture itself, we must also consider the protocols and ab-
stractions by which applications make use of it.

Content-Centric Networking (CCN) is an approach to (inter-
)networking designed for efficient, secure, and scalable con-
tent distribution [16, 13, 18]. In CCN, named content –
rather than named interfaces or hosts – are treated as first-
class entities. To obtain content, a consumer issues a re-
quest, called an interest, with the name of the desired con-
tent to the network. This request is autonomously routed to
the location where the content is stored and/or produced.
By decoupling data from its source, content can be cached
within the network to optimize bandwidth use, reduce la-
tency, and enable effective utilization of multiple network
interfaces simultaneously. For authenticity reasons, each
piece of named content must be signed1 by its producer,
also known as a publisher. This allows trust in content to
be decoupled from trust in an entity – a host or router –
that might store and/or disseminate that content.

Aside from the aforementioned performance improvements,
the content-centric approach to networking has one key ben-
efit: an abstraction layer, in the form of requests and the
corresponding content, is introduced between applications
and the location where content is stored. We present a de-
tailed description of this API, called the CCN Portal, and
discuss several cases in which it is used. The Portal API en-
ables applications to be constructed in a location-agnostic
way using the atomic interest and content object abstrac-
tions. This abstraction has profound implications on future
applications and systems. For example, it can be used to
simplify everything from media streaming applications such
as Netflix to the deployments of the Internet of Things (IoT).

Although highly useful, the CCN Portal named-content
abstraction can be further extended to enable further in-
dependence from the network. Although highly useful, the
CCN Portal named-content abstraction can be extended to
enable further independence from the network. Many mod-
ern systems and applications rely on files as a high-level
abstractions upon which other data access mechanisms are
implemented. For example, video streams, data bases, mes-
sages, and key-value stores. Interests and content objects
serve as a vehicle for transferring raw data; they cannot be
treated as these various abstractions without another layer
of indirection. This problem is exacerbated by the fact that
content objects may carry encrypted data, and upper-level
applications may not wish to perform decryption manually.

These realizations lead us to the main contribution of this

1Signatures are not mandated with the advent of self-
certifying names. See [1] for more details.



work: the Named Data Interface (NDI). This component
builds on top of the Portal API to provide a Create, Read,
Update, Delete (CRUD) API for applications to read and
manipulate network data. Internally, it interfaces with the
operating system processes and remote services needed to
compose content objects into these abstractions, decrypting
their contents if necessary. To highlight the efficacy of the
NDI, we show how to implement the UNIX file I/O API
using the NDI API, thereby placing file I/O and network
communication under a single, standard API. The net result
is a layer of abstraction upon which completely network-
agnostic applications can be built.

The rest of this paper is organized as follows. Section
2 presents the development history of today’s Internet and
how it led to CCN. It also provides a relevant discussion
of the CCN architecture and core communication protocols
upon which the rest of the paper is founded. Section 3
presents the CCN Portal API, which is then expanded to
the NDI API in Section 4. Section 5 shows how to use
merge remote and local data using the NDI API. Finally,
we conclude a discussion of related work in Section .

2. PRELIMINARIES
The focus of this work is on the evolutionary progression

of the applications and the Internet. To capture the de-
velopment trajectory, we must first describe the history of
networking technologies, including both the underlying net-
working fabric (e.g., circuit- vs. packet-switching networks)
and protocol suites (e.g., NCP, TCP/IP, and CCN). This
section may be skipped without loss of continuity should
the reader already possess a firm understanding of these
technologies.

2.1 Circuits to Packets: The History of the In-
ternet and TCP/IP

The early public switched telephone system is an ancestor
of today’s Internet. Telephone calls were made by establish-
ing a direct connection between two terminals. In order to
establish a call, a user would dial the operator and ask to be
connected to the intended destination. This involved physi-
cally establishing a circuit between the two terminals. While
this point-to-point communication paradigm makes it easy
to support minimal quality of services guarantees, it does
not scale.

Leonard Kleinrock introduced the notion of packet-switching
communication in 1961 [17], and later went to DARPA to
work on the first incarnation of a packet-switched network
– ARPANET – standardized in 1967 and deployed in 1969
[25]. In December 1970, the Networking Working Group, led
by Steve Crocker, finalized the Networking Control Protocol
(NCP), which was a host-to-host protocol that ran on top
of ARPANET. Using NCP, applications could now be devel-
oped on top of ARPANET. All applications and uses were,
however, limited to noncommercial endeavors. In this origi-
nal incarnation, there were only three layers in the network-
ing stack: the physical layer, supporting various mediums
such as radio and satellite networks, transport layer, sup-
porting packet movement by NCP, and application layer.

As the number of nodes and types of networks connected
ARPANET grew, it became clear that dealing with hetero-
geneous systems would be an issue. To remedy this problem,
Kahn introduced the idea of open-architecture network, a
concept still embodied by today’s Internet. The Transport

Control Protocol (TCP) emerged from Cerf and Kahn [5]
in 1974 as a result of decoupling the network details from
the transport semantics in NCP. The original TCP imple-
mentation only supported virtual circuits for reliable packet
delivery. Such QoS guarantees are not needed by all applica-
tions, though, which led to the split of the overloaded TCP
into a pair of network and transport protocols responsible
for individual packet forwarding and service features such as
reliabile delivery, respectively. The User Datagram Protocol
(UDP) was later introduced as a separate transport protocol
for applications that did not require the rich feature set of
TCP.

With this protocol suite in place to support a diverse set of
applications and internetworking technologies, ARPANET
was set to flourish. Robert Metcalf’s development of MAC-
layer Ethernet at PARC [21] paved the way for increas-
ingly connection local area networks. As networks grew, the
scalability of packet routing technologies came into ques-
tion. To address this problem, hierarchical routing was ad-
dressed [20]. ARPANET was segregated into regions (i.e.,
autonomous systems) within which the Interior Gateway
Protocol (IGP) was used to distribute routing information.
Routes between these regions were connected via the Ex-
terior Gateway Protocol (EGP). Both IGP and EGP are
network-layer protocols, upon which TCP relied for estab-
lishing routes that make individual packets routable.

Building on TCP/IP and ARPANET, the U.S. National
Science Foundation (NSF) launched NSFNET in 1986 for
uses beyond research and education. The goal of the NSF
was to create a network of networks, connected to ARPANET,
with less restrictions on its use. Due to these limited restric-
tions, use of NSFNET grew rapidly, which required equip-
ment and technology upgrades backed by commercial part-
ners such as IBM [27, ?]. Its continued growth led to the
decomission of ARPANET in 1990, and was itself subse-
quently decomissioned in 1995 in lieu of a new backbone
service – today’s Internet.

In 1995, the TCP/IP protocol suite consisted of five lay-
ers: physical, link (MAC) network, transport, and applica-
tion [7]. These layers (models) encapsulate, or at least at-
tempt to encapsulate, the scope of the direct links to other
nodes on the local network, the internetworking range, end-
to-end transport connections, and the scope of the software
applications. Opponents of the TCP/IP model criticzed
the fact that some layers in this protocol stack had cross-
cutting concerns or were duplicated [3]. An alternative is the
Open Systems Interconnection (OSI) model, which was de-
veloped and released in 1980 to enforce more strict layering
[29]. It consists of a physical, data link, network, trans-
port, session, presentation, and application layer. Its goal
was to more precisely define boundaries between layers for
increased modularity and better layers of abstraction.

Regardless of the model chosen, the general abstractions
are the same. The application layer is presented with either
(a) raw sockets to send and receive data froma a specific
host in the network, or (b) a raw IP packet to send data
to a host. Application layer protocols and APIs such as
HTTP, FTP, and Telnet were developed as a further layer
of abstraction for certain applications such as web browsers
and file downloading clients, but these abstractions are not
universally applicable. Some applications still need to use
sockets and/or raw IP packets to send or receive data. Thus,
the key abstractions in the current Internet model are based



on packets and their locations.

2.2 Packets to Content: The Emergence of ICNs
Unlike TCP/IP, which focuses on end-points of communi-

cation and their names/addresses, request-based ICN archi-
tectures ([16]) focus on content by making it named, ad-
dressable, and routable within the network. CCN [1] is
incarnation of a request-based ICN; we use the terms in-
terchangeably going forward. A content name is composed
of one or more variable-length components opaque to the
network. Name component boundaries are explicitly de-
limited by “/” in the usual URI-like representation. For
example, the name of a Youtube video content might be
lci:/youtube/parc/ccn-overview.mpeg.

CCN communication adheres to the pull model whereby
content is delivered to consumers only upon explicit request.
There are two basic types of packets in CCN: interest and
content messages. A consumer requests content by issu-
ing an interest message. If an entity can “satisfy” a given
interest, it returns a corresponding content object. Each
content delivery in CCN must be strictly preceded by an
interest. If content C with name n is received by a router
with no pending interest for that name, the content is con-
sidered unsolicited and is discarded. Name matching in
CCN is based on exact match. For example, an interest for
lci:/youtube/alice/video-749.avi can only be satisfied
by content named lci:/youtube/alice/video-749.avi.

CCN interests messages include, at a minimum, the name
of the requested content. Additionally, they may carry a
payload field that enables consumers to push data to pro-
ducers along with the request. Conversely, CCN content
objects include several fields. In this paper, we are only
interested in the following three:

• Name – A sequence of explicit name components fol-
lowed by an implicit digest (hash) component of the
content recomputed at every hop. This effectively pro-
vides each content with a unique name and guarantees
a match when provided in an interest.

• Validator – a public key signature, generated by the
content producer, covering the entire object, including
all explicit components of the name. The signature
field also includes a reference (by name) to the public
key needed to verify it.

• Recommended Cache Time – an optional time for the
content objects to be cached supplied by producers.

There are three types of CCN entities (roles):2

• Consumer – an entity that issues an interest for con-
tent.

• Producer – an entity that produces and publishes (as
well as signs) content.

• Router – an entity that routes interest packets and
forwards corresponding content packets.

Each CCN entity, i.e., not just routers, maintains at least
two components [4]:

2A physical entity, or host, can be both consumer and pro-
ducer of content.

• Content Store (CS) – cache used for content caching
and retrieval. From here on, we use the terms CS
and cache interchangeably. Recall that the timeout of
cached content is specified in the freshness field.

• Forwarding Interest Base (FIB) – table of name pre-
fixes and corresponding outgoing interfaces. The FIB
is used to route interests based on longest-prefix-matches
of their names.

• Pending Interest Table (PIT) – table of outstanding
(pending) interests and a set of corresponding incom-
ing and outgoing interfaces.

Notably, a CCN entity may optionally maintain a Con-
tent Store (CS), a cache used for content caching and re-
trieval. From here on, we use the terms CS and cache in-
terchangeably. The timeout of cached content is specified in
the Recommended Cache Time field specified by the content
producer.

When a router receives an interest for name n, and there
are no pending interests for the same name in its PIT, it
forwards the interest to the next hop(s) according to its FIB.
For each forwarded interest, a router stores some amount of
state information, including the name in the interest and
the interface from which it arrived. However, if an interest
for n arrives while there is already an entry for the same
content name in the PIT, the router collapses the present
interest, and any subsequent interests for n, storing only
the interfaces on which it was received. When content is
returned, the router forwards it to all of the corresponding
incoming interfaces and deletes the corresponding PIT entry.
Since no additional information is needed to deliver content,
an interest does not carry any source address.

Upon receiving an interest, a router first checks its cache
to see if it can satisfy this interest locally3. Producer-originated
digital signatures allow consumers to authenticate content
that is received, regardless of the entity that serves this con-
tent.

In addition to a name, CCN interest messages may also
contain a KeyId and/or ContentObjectHash. The former is
the hash of the public key used to verify the signature of
the content, whereas the latter is the actual hash digest of
the content object returned in response. These are useful
for trust management purposes [12]. For example, the CCN
protocol stipulates that if content objects satisfied from the
cache of a router, then that router must either (a) verify the
signature of the content or (b) check that the hash digest of
the content is as expected. In case (a) the router checks the
interest KeyId, if present, against the key used to verify the
signature. In case (b) the router computes the hash of the
content object and compares it against the provided hash
digest. Equality in either case means the content can be
trusted and forwarded downstream as a satisfying response
to the corresponding interest.

2.3 Manifest-Based Content Retrieval
In CCN, manifests are a special type of content object

which serve to encapsulate and collate groups of content ob-
jects with some set of associated metadata. Each content
object contained in the manifest is coupled with its associ-
ated hash digest value. To illustrate their utility, consider

3This is why CCN lacks any notion of a destination address
– content can be served by any CCN entity.



the following example. A consumer first issues an interest for
a content objects and retrieves a manifest as the response.
The manifest is then parsed to obtain content object names
and hash values. Using these names and hash values, in-
terest messages with non-null ContentObjectHash fields are
created and issued to the network sequentially or simulta-
neously to obtain all content objects encapsulated by the
manifest.

Aside from reducing the overhead involved in retrieving
fragmented messages, manifests are useful in that they cir-
cumvent the need to individually sign and verify all content
objects encapsulated within a manifest. Since each compo-
nent content object is obtained via an interest with a hash
digest, only the signature of the manifest needs to be verified
to ascertain the trustworthiness of the content object. This
benefit can be exploited by creating and leveraging mani-
fest trees, in which the name of a component content object
within a manifest is itself the name of another manifest. If
the signature of the root manifest is verified and the asso-
ciated verification key is trusted, then all content objects
encapulsated by said manifest are also trusted by the prop-
erties of self-certifying names.

3. THE CCN PORTAL
The CCN transport stack is a set of components, each of

which is focused on a specific task. It adheres to the chain-of-
command pattern: each component has an outbound queue
to move messages from the application toward the network,
as well as an inbound queue to move messages from the net-
work toward the application. Since each component focuses
on a single purpose, the design promotes a strong separa-
tion of concerns between elements in the stack and enables
a plug-and-play approach to stack compositions for different
needs.

The transport stack is composed of a set of optional com-
ponents and two required components: the API adaptor and
the forwarder adaptor. Messages are pipelined through the
transport stack components on their way between the upper-
level API and the forwarder. The forwarder is the compo-
nent that contains, updates, and uses the FIB, PIT, and CS
when processing inbound and outbound messages. Typical
stack instantiations include components for protocol man-
agement (e.g., flow control and chunking), outbound mes-
sage signing, inbound message signature verification, packet
format encoding and decoding, and communication with the
local forwarder. This extensible and modular architecture
supports a spectrum of possible stack configurations, in-
cluding instances with only a very minimal set of features
necessary for datagram-style messaging to instances with
highly sophisticated components providing optional features
such as an in-order stream of content objects with arbitrary
rewind and fast-forward within the stream.

Interest and content objects are the primary elements of
discourse in CCN4. Consumers issue interests for data and
receive content objects in response; they do not need to know
the details of the transport stack to communicate. The ac-
tual contents, semantics, and representation of both inter-
ests and content objects within the network stack are en-
tirely dependent on its internal components. Consequently,
a natural abstraction for interfacing with CCN is a single

4Control messages also exist, but as alternative means of
sending data and information between parties.

interface through which discrete interest and content object
messages flow. In CCN, this interface is called the Portal.
The Portal is minimal interface used to communicate with
the transport stack, and therefore, the network. An in-
stance of the Portal encapsulates a library of functions that
perform operations between the Portal API and the trans-
port stack.

The Portal API provides a simple interface to the trans-
port stack allowing the application to compose, use, and
maintain transport stacks and to perform message opera-
tions through the stack. It is a low-level API providing a
simple interest and content object interface upon which ap-
plications and other interfaces are implemented. A single
transport stack is associated with a single Portal API in-
stance.

Within the context of a single system, all instantiated
transport stack and Portal API instances are contained within
the transport framework, which also has its own API (see
Figure 1). The transport framework is responsible for sup-
plying the runtime environment for a transport stack. It
provides an interface for composing and decomposing trans-
port stacks and interfaces with the necessary system re-
sources (e.g., the operating system, communication inter-
faces, etc.). While an application may start multiple Portal
instances with associated transport stacks, it will only have
one transport framework to manage all stacks. Furthermore,
each pair of Portal and transport stack instances will have
its own encapsulated identity assigned to it by the applica-
tion. This identity, which is associated with a set of public
and private keys, is used when signing messages within the
network stack that are issued by Portal.

4. THE NAMED DATA INTERFACE
Raw interests and content objects facilitate the develop-

ment of network-agnostic applications. They do not, how-
ever, serve as rich abstractions upon which network-agnostic
applications and systems can be built. This is a well-known
lesson in the Unix world; while it is possible to perform ba-
sic I/O operations to read and write data to disk, files are
a much simpler interface to data stored on disk. The UNIX
File API provides an interface to files. The File type identi-
fies a stream and contains the information needed to control
it, including a pointer to its buffer, its position indicator
and all its state indicators. Issues such as user permissions
and concurrent modification are handled by the operating
system; the File API operates within the context of the op-
erating system and under the auspices of a particular user.

UNIX files are an extremely powerful abstraction upon
which many different applications (e.g., grep, sed, awk),
APIs (e.g., Apache Zookeeper [14]), and large systems (e.g.,
databases) have been built. We borrow from its success
by introducing the CCN Named Data Interface (NDI),
a centralized service that collates services such as network
communication, access control and permissions, and concur-
rency synchronization to provide a single, simplistic, file-like
API. The framework, shown in Figure 2, is an extension of
the transport stack that uses external and local operating
system services to perform a variety of useful functions and
provide a lightweight file-like API to upper-level layers in
the stack. The API follows the CRUD (create, read, up-
date, delete) model with ACID guarantees. A high-level
description of this API is summarized in Figure 1.

Note: Although the word “file” is used, it is not meant to



Table 1: The Named Data Interface API.

Function Signature Description
create(lciName, ACS) Make a file available with the given LCI encoded name and access information.
buffer = read(lciName, offset=0, numbytes=0) Read data (of numbytes size) from the specified name starting at the given offset.
update(lciName, buffer, offset=0) Update the file with the given name and offset (default 0) with the specified data.
delete(lciName) Make a file that was previously available, unavailable.

imply persistent storage. Applications may create files that
are only transmitted across the network and are consumed
without being stored. However, the NDI does impose se-
mantics that require a create() to provide a file that is not
already in existence, and update to provide data to a file
that must already exist. This permits cooperating applica-
tions – using the NDI – to establish what it means to create
a file versus updating a file.

The NDI API empowers clients to create content with spe-
cific names, which ultimately determines the manner and
location at which they are published. Clients can then open
handles to files in read or write mode, and interact with
them using the appropriate read or write functions. Figure
3 shows a sample use case in which a consumer reads con-
tent from a file provided by the producer. In this case, the
producer is in charge of creating, updating (writing), and
deleting the file as needed.

Note that, depending on the name, the file may not be
stored locally. In this case, the producer creates files stored
on remote machines using the same CRUD functions. How-
ever, depending on the relationship between the producer
and remote system, some form of producer authentication
protocol may be required in order to validate all CRUD re-
quests on the remote system. This distributed behavior is
shown in Figure 4.

4.1 Encapsulated Behavior
From the application’s perspective, the NDI is meant as a

more useful abstraction beyond interest and content objects.
For example, applications may instantiate file instances us-
ing the framework and then read and write to them, much
like any normal file. From the system’s perspective, the NDI
coordinates many working services to give further meaning
to the atomic interest and content object messages provided
by CCN. Examples of internalized behavior performed on
behalf of the framework are elaborated upon in the follow-
ing sections.

4.1.1 Object Reconstruction
As discussed in Section 2.3, manifests may be used to cre-

ate collections of data. These manifests will either be cre-
ated by the NDI on behalf of producers, or producers will
manually create and inject them into the local NDI instance.
If a client application wants to view the data represented by
a manifest as a single source of data, e.g., a file, the NDI
will (1) recursively obtain the data for all content objects
pointed to by a root manifest, and (2) use a predefined pol-
icy for concatenating or merging these data partitions into
a single piece of data over which clients can iterate. Ad-
ditionally, the assembly manifest may decrypt the data in
content objects referenced within a manifest, if it can ob-
tain the appropriate cryptographic keys needed to do so. If
content is encrypted, the AccessControlSpecification (ACS)
field of the manifest will contain all of the information nec-

essary to (1) identify the access policy controls enforced for
the content and (2) retrieve the (possibly personalized) cryp-
tographic keys tied to the client [19]. Access control is an
application-layer policy decision that must be made by pro-
ducers and then encoded into manifests and their ACS fields.
Consequently, if a piece of content that is represented by a
manifest is under access control, the producer must provide
an ACS to specify the access policy.

4.1.2 Environment Interaction
As shown in Figure 2, the NDI uses information and ser-

vices in its environment for operation. For example, the
NDI interfaces with the local operating system to access
physically attached devices. The name-based CRUD inter-
face does not impede one from enabling device interaction
via these simple commands. For example, a user may write
content to a USB drive named lci:/localhost/media/usb0

attached to the local machine by invoking the following com-
mand:

PARCBuffer *emptyBuffer =

parcBuffer_AllocateCString(Secret String’);

update(‘lci:/localhost/media/usb0’, emptyBuffer);

Since the offset was not provided, a handle to the local de-
vice is opened and the buffer elements are appended to the
device.

Other information that can be retrieved from the infor-
mation include file permissions and policies, storage space,
etc. Applications on the system are also named, and can
therefore also be invoked by the NDI. For example, if the
user wanted to run top to view a snapshot of process in-
formation on the system, the user may invoke the following
command:

PARCBuffer *procStatusBuffer =

read(‘lci:/localhost/proc/top’);

4.1.3 Access Control and Identity Management
Data contained in a content object may be encrypted.

Rather than return encrypted data to the application, the
NDI can decrypt the content object payload, if given the ap-
propriate cryptographic keys or the ability to retrieve them
from an external service or the local operating system. In
a similar vein, if content needs to be decrypted or the iden-
tity of a particular consumer needs to be resolved to be
included in an interest for authorization purposes, the NDI
may communicate with the local operating system or an
external identity service, e.g., Kerberos, to obtain the nec-
essary cryptographic keys or identity information.

4.1.4 Content Publication
The name of the content specified in the create() func-

tion determines the location at which the data is actually
persisted. For example, the forwarder on a Dropbox host
may be configured to route all content with the prefix lci:/dropbox
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to the local machine. Invoking the create() function with a
name with the same prefix would, naturally, cause the data
to be persisted locally. For external hosts, such as remote
clients using the Dropbox service, invoking the create()

function with the same prefix would cause all requests to be
forwarded to the appropriate Dropbox host for persistence.
Hiding the location behind the name brings applications one
step closer to network-agnostic settings.

4.1.5 Remote Authentication and Access Control
When reading data from or writing data to a remote ma-

chine, security (authentication and authorization) is a con-
cern. The NDI will implement the name-based access con-
trol (NBAC) scheme outlined in [11] for protecting access to
remote content. Let C be the client machine initialization
a request for a remote read or write operation on content
object X, and let P be any host where the data is located. If
C is authorized to access content X, then all requests (inter-
ests) generated via the CRUD API will have signed payloads
proving their ability to access the data. P will verify this
signature before performing any operation.
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Figure 2: Component-level diagram of the NDI and the in-
terfaces it relies upon, as well as the interfaces it exposes to
upper-level applications and APIs. All components above
the solid red line are completely network-agnostic.

If NBAC is not employed, then the NDI must authen-
ticate itself or each request so that the target machine can
verify the request before reading or writing data. Any CCN-
friendly authentication protocol can be used and implemented
for this purpose, but we advocate one based on the standard
challenge-response paradigm to avoid replay attacks.

4.1.6 State Management
The primary intent of the NDI is to provide a lightweight,

simple, and familiar API for creating, reading, and manip-
ulating possibly remote content. The CRUD interface pro-
vides users with a way to extract or write data of arbitrary
size to content objects. Since the NDI is built on top of the
Portal API, which only provides a discrete message inter-
face, the NDI needs to maintain state about all content it
manipulates. This state is stored in a content state block
(CSB). In the UNIX File API, this is analogous to main-
taining a file pointer offset so that calls to fseek and fread

behave as expected. A CSB is maintained for all “open” con-
tent handles, i.e., a new CSB is allocated for each request
that corresponds to a previously unseen content name. To
keep the memory footprint small for each CSB, the only
additional state that is maintained beyond the content off-
set is the access mode (e.g., read, write) and a persistent
authentication token, if per-request authenticators are not
used. All other information, such as the identity associated
with the NDI, can be obtained from the application, local
environment, or underlying Portal API instance.

5. NETWORK-AGNOSTIC CONTENT
Network programmers, web application developers, and

distributed system designers, to give a few examples, have
long been burdened with the task of being acutely aware of
the details about network communication. With the evolu-
tion of the transport stack to include the NDI, which pro-
vides a similar interface to that of the UNIX file system, ap-
plications no longer have to be concerned with the location
of their data (Figure 5 shows the evolution of the network
stack towards this “network-agnostic” level of abstraction).
Instead, they can focus on the contents and meaning of their
data. The fact that the local file system or an external web
application provides the data is, and should be, independent
of the manner in which said data is consumed. Furthermore,
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Figure 3: A normal producer-consumer interaction in which the producer performs local CRD operations.
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Figure 4: A producer interacting with a remote file store via the NDI CRUD interface.



the API used to interact with this data should be location-
agnostic.

The NDI CRUD API enables clients to interact and treat
network data as if it were persistent – a paradox in today’s
world. It enables an application to switch – on the fly –
from local file based access to network based access with-
out through the same interface. As previously mentioned,
persistent data access has traditionally been driven by the
UNIX File API, shown in Figure ??. A vast spectrum of
applications from databases to web servers use this API to
store, modify, and retrieve data located on persistant stor-
age mediums. Since the NDI provides a layer of abstraction
for location-agnostic persistent data, it may also be used by
the very same UNIX File API. To leverage the NDI API
using the standard UNIX file API, we need a shim between
the these layers - an adapter [10]. The adapter, shown in
Figure 6, would map the UNIX calls to the assembly CRUD
operations as shown in Table ??. Note that, in all cases, the
name of a file can be obtained by the NDI; it just maintains
a map from fids to string names.

This adapter would be responsible for “routing” all re-
quests, such as an open invocation, to either the local filesys-
tem or Portal API depending on the file name. This has
multiple benefits. We elaborate upon a few of these below.

• Notions of storage locations and servers are immedi-
ately abstracted away behind this common API.

• Existing applications can migrate to CCN with mini-
mal development effort. Software that currently relies
upon the UNIX File I/O API can use the same func-
tion signatures for accessing both local and network
files without ever having to deal with sockets or IP
addresses.

• Richer APIs can be built upon the concept of random
access files, including: key-value store, messaging, and
data streaming APIs. These would enable greatly sim-
plified development of applications such as databases,
email systems, and media streaming services. Simpli-
fied software is subject to significantly less bugs, is
easier to analyze for correctness concerns and security
vulnerabilities, and eases future maintainability.

• Security concerns such as encryption and access con-
trol are handled beneath the API. If the requesting
client does not have access, whether that means the
proper permissions on the local operating system or
appropriate set of credentials for some remote service,
the file can neither be opened nor used. The ease by
which file access control is enforced in modern operat-
ing systems is naturally extended to network data.

6. RELATED WORK
Moiseenko and Zhang proposed the first robust API for

producer and consumer interation for NDN [22]. It is iden-
tical in nature to the Portal API with the caveat that func-
tions are different based on whether an entity is a producer
or consumer. An entity is given a set of functions to write
data to the network; consumers write interests and retrieve
content, and producers write (publish) content. Both in-
terfaces could be implemented using the NDI. Gallo et al.
[9] also proposed an abstraction layer, and corresponding

ICN network stack, tailored to separate consumer and pro-
ducer roles for process-to-content communication via the
NDN interest-content messaging paradigm. However, their
implementation is based on sockets. The CCN Portal was
intended to replace the legacy socket interface due to XXX
[26]. If this socket-like behavior is truly desired, it can easily
be implemented using the CRUD operations exposed by the
NDI.

Outside of ICN designs, Zhu et al. [28] proposed a content-
centric transport protocol to enable content-oriented mes-
saging on top of existing TCP/IP architectures. Their API
is fundamentally identical to the CRUD interface exposed
by the NDI; consumer requests are location-agnostic and
directed to the appropriate handler (i.e., the local file sys-
tem or a remote machine) via a proxy request dispatcher,
and producer requests are written to local storage. The
key difference is that the NDI determines the write location
based on the content name, rather than the origin of the
publication (i.e., create) request. In a similar vein, APIs
[2, 23] and optimizations [24] for I/O forwarding in highly
distributed and compute-invensitve systems are similar in
nature to the goal of the NDI. The common goal is a set of
APIs which enable clients to execute I/O tasks, e.g., open,
sync, resize on data without first knowing where the data is
stored. That is, clients are not required to fetch data to per-
form an I/O task – the API serves the dispatch I/O requests
to the appropriate node. A similar problem was also studied
by Foster et al. in [8], where the goal was to provide an API
for remote file manipulation that exploited characteristics
of the network. Struggles implementing this sophisticated
behavior on the current TCP/IP network stack exemplify
the need for more modern network stacks [15]. Accordingly,
this location-agnostic property is similar to what the Unix
File API shim provides on top of the NDI. As we have ar-
gued, this functionality can be implemented with relative
ease with the CCN network stack. This ease of implementa-
tion is due in part to the hierarchy of APIs upon which the
UNIX FIle API shim is built; it embodies clear functional
decomposition, which is a driving design goal for modern
APIs [6].

7. CONCLUSION
In this paper we presented the CCN Portal and Named

Data Interface. As we saw, in addition to the CRUD API
exposed by the NDI, the services provided by internally,
such as access control (e.g., autonomous content decryption)
and object reconstruction, provide a rich level of abstraction
for upper-level APIs who need not be concerned by such
details. We then showed how this hierarchy of APIs can
be used to create a network- and location-agnostic API for
I/O, thereby merging local and remote data under a single,
standard API. This is critically important as applications
become increasingly content-centric and computer systems
become increasingly connected; patchwork solutions such as
CDNs, which entail complicated overhead and management,
will cease to scale as the need for content grows faster than
the performance of the underlying network.
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